
Bakthat Documentation
Release 0.6.0

Thomas Sileo

May 20, 2015

Contents

1 Requirements 3

2 Overview 5
2.1 Bakthat command line tool . 5
2.2 Bakthat Python API . 5

3 Installation 7

4 User Guide 9
4.1 User Guide . 9

5 Developer’s Guide 17
5.1 Developer’s Guide . 17

6 API Documentation 23
6.1 Bakthat API . 23

7 Articles 31

8 Indices and tables 33

Python Module Index 35

i

ii

Bakthat Documentation, Release 0.6.0

Release v0.6.0.

Bakthat is a MIT licensed backup framework written in Python, it’s both a command line tool and a Python module
that helps you manage backups on Amazon S3/Glacier and OpenStack Swift. It automatically compress, encrypt
(symmetric encryption) and upload your files.

Here are some features:

• Compress with tarfile

• Encrypt with beefish (optional)

• Upload/download to S3 or Glacier with boto

• Local backups inventory stored in a SQLite database with peewee

• Delete older than, and Grandfather-father-son backup rotation supported

• Possibility to sync backups database between multiple clients via a centralized server

• Exclude files using .gitignore like file

• Extendable with plugins

You can restore backups with or without bakthat, you just have to download the backup, decrypt it with Beefish
command-line tool and untar it.

You may also check out BakServer, a self-hosted Python server, to help you manage backups anywhere and keep
multiple bakthat client synchronized across servers.

Contents 1

http://aws.amazon.com/s3/
http://aws.amazon.com/glacier/
http://swift.openstack.org
http://docs.python.org/library/tarfile.html
http://pypi.python.org/pypi/beefish
http://pypi.python.org/pypi/boto
http://peewee.readthedocs.org/
http://en.wikipedia.org/wiki/Backup_rotation_scheme#Grandfather-father-son
http://pypi.python.org/pypi/beefish
http://bakserver.bakthat.io

Bakthat Documentation, Release 0.6.0

2 Contents

CHAPTER 1

Requirements

Bakthat requirements are automatically installed when installing bakthat, but if you want you can install them manu-
ally:

$ pip install -r requirements.txt

• aaargh

• pycrypto

• beefish

• boto

• GrandFatherSon

• peewee

• byteformat

• pyyaml

• sh

• requests

• events

If you want to use OpenStack Swift, following additional packages are also required.

• python-swiftclient

• python-keystoneclient

3

http://pypi.python.org/pypi/aaargh
https://www.dlitz.net/software/pycrypto/
http://pypi.python.org/pypi/beefish
http://pypi.python.org/pypi/boto
https://pypi.python.org/pypi/GrandFatherSon
http://peewee.readthedocs.org/
https://pypi.python.org/pypi/byteformat
http://pyyaml.org
http://amoffat.github.com/sh/
http://docs.python-requests.org
https://events.readthedocs.org
https://pypi.python.org/pypi/python-swiftclient
https://pypi.python.org/pypi/python-keystoneclient/

Bakthat Documentation, Release 0.6.0

4 Chapter 1. Requirements

CHAPTER 2

Overview

2.1 Bakthat command line tool

$ pip install bakthat

$ bakthat configure

$ bakthat backup mydir
Backing up mydir
Password (blank to disable encryption):
Password confirmation:
Compressing...
Encrypting...
Uploading...
Upload completion: 0%
Upload completion: 100%

or

$ cd mydir
$ bakthat backup

$ bakthat show
2013-03-05T19:36:15 s3 3.1 KB mydir.20130305193615.tgz.enc

$ bakthat restore mydir
Restoring mydir.20130305193615.tgz.enc
Password:
Downloading...
Decrypting...
Uncompressing...

$ bakthat delete mydir.20130305193615.tgz.enc
Deleting mydir.20130305193615.tgz.enc

2.2 Bakthat Python API

import logging
import sh
logging.basicConfig(level=logging.INFO)

5

Bakthat Documentation, Release 0.6.0

from bakthat.helper import BakHelper

BACKUP_NAME = "myhost_mysql"
BACKUP_PASSWORD = "mypassword"
MYSQL_USER = "root"
MYSQL_PASSWORD = "mypassword"

with BakHelper(BACKUP_NAME, password=BACKUP_PASSWORD, tags=["mysql"]) as bh:
sh.mysqldump("-p{0}".format(MYSQL_PASSWORD),

u=MYSQL_USER,
all_databases=True,
_out="dump.sql")

bh.backup()
bh.rotate()

6 Chapter 2. Overview

CHAPTER 3

Installation

With pip/easy_install:

$ pip install bakthat

From source:

$ git clone https://github.com/tsileo/bakthat.git
$ cd bakthat
$ sudo python setup.py install

Next, you need to set your AWS credentials:

$ bakthat configure

7

Bakthat Documentation, Release 0.6.0

8 Chapter 3. Installation

CHAPTER 4

User Guide

4.1 User Guide

Everything you need to know as a user.

4.1.1 Getting Started

Basic usage, “bakthat -h” or “bakthat <command> -h” to show the help.

If you haven’t configured bakthat yet, you should run:

$ bakthat configure

Note: Even if you have set a default destination, you can use a different destination using the -d/--destination
parameter, for example, if S3 is the default destination, to use Glacier just add “-d glacier” or “–destination glacier”.

4.1.2 Backup

$ bakthat backup --help
usage: bakthat backup [-h] [-d DESTINATION] [--prompt PROMPT] [-t TAGS]

[-p PROFILE] [-c CONFIG] [-k KEY]
[filename]

positional arguments:
filename

optional arguments:
-h, --help show this help message and exit
-d DESTINATION, --destination DESTINATION

s3|glacier|swift
--prompt PROMPT yes|no
-t TAGS, --tags TAGS space separated tags
-p PROFILE, --profile PROFILE

profile name (default by default)
-c CONFIG, --config CONFIG

path to config file
-k KEY, --key KEY Custom key for periodic backups (works only with

BakManager.io hook.)

9

Bakthat Documentation, Release 0.6.0

When backing up file, bakthat store files in gzip format, under the following format: originaldirname.utctime.tgz,
where utctime is a UTC datetime (%Y%m%d%H%M%S).

Note: If you try to backup a file already gziped, bakthat will only rename it (change extention to .tgz and append
utctime).

And you can also disable compression by setting compress: false in you configuration file (~/.bakthat.yml by
default).

Bakthat let you tag backups to retrieve them faster, when backing up a file, just append the --tags/-t argument, tags
are space separated, when adding multiple tags, just quote the whole string (e.g. --tags "tag1 tag2 tag3")

Since version 0.5.2, you can set the password with BAKTHAT_PASSWORD environment variable.

$ BAKTHAT_PASSWORD=mypassword bakthat backup myfile

If you don’t specify a filename/dirname, bakthat will backup the current working directory.

$ cd /dir/i/want/to/bak
backup to S3
$ bakthat backup
or
$ bakthat backup /dir/i/want/to/bak

$ bakthat backup /my/dir -t "tag1 tag2"

you can also backup a single file
$ bakthat backup /home/thomas/mysuperfile.txt

backup to Glacier
$ bakthat backup myfile -d glacier

set the password with BAKTHAT_PASSWORD environment variable
$ BAKTHAT_PASSWORD=mypassword bakthat backup myfile

disable password prompt
$ bakthat backup myfile --prompt no

Excluding files

New in version 0.5.5.

Bakthat use a ”.gitignore style” way to exclude files using Unix shell-style wildcards.

There is two way to exclude files:

• by creating a .bakthatexclude file at the root of the directory you want to backup.

• by specifying a file directly with the --exclude-file argument.

By default when performing a backup, if no exclude file is specified, it will look for either a .bakthatexclude file or a
.gitignore file. So you backup a git repository, it will use the existing .gitignore if available.

Here is an example .bakthatexclude file, wich exlude all .pyc and .log files, and both tmp and cache directory.

*.pyc

*.log
tmp
cache

10 Chapter 4. User Guide

Bakthat Documentation, Release 0.6.0

Reduced redundancy using S3

New in version 0.5.5.

If you backup to S3, you can active the reduced redundancy by using the --s3-reduced-redundancy flag.

bakthat backup --s3-reduced-redundancy

Temp directory

You can change the temp directory location by setting the TMPDIR, TEMP or TMP environment variables if the
backup is too big to fit in the default temp directory.

$ export TMP=/home/thomas

4.1.3 Restore

$ bakthat restore --help
usage: bakthat restore [-h] [-d DESTINATION] [-p PROFILE] [-c CONFIG]

filename

positional arguments:
filename

optional arguments:
-h, --help show this help message and exit
-d DESTINATION, --destination DESTINATION

s3|glacier|swift
-p PROFILE, --profile PROFILE

profile name (default by default)
-c CONFIG, --config CONFIG

path to config file

When restoring a backup, you can:

• specify filename: the latest backups will be restored

• specify stored filename directly, if you want to restore an older version.

$ bakthat restore bak

if you want to restore an older version
$ bakthat restore bak20120927
or
$ bakthat restore bak20120927.tgz.enc

restore from Glacier
$ bakthat restore bak -d glacier

Note: When restoring from Glacier, the first time you call the restore command, the job is initiated, then you can
check manually whether or not the job is completed (it takes 3-5h to complete), if so the file will be downloaded and
restored.

4.1. User Guide 11

Bakthat Documentation, Release 0.6.0

4.1.4 Listing backups

Let’s start with the help for the show subcommand:

$ bakthat show --help
usage: bakthat show [-h] [-d DESTINATION] [-t TAGS] [-p PROFILE]

[-c CONFIG]
[query]

positional arguments:
query search filename for query

optional arguments:
-h, --help show this help message and exit
-d DESTINATION, --destination DESTINATION

glacier|s3|swift, show every destination by default
-t TAGS, --tags TAGS tags space separated
-p PROFILE, --profile PROFILE

profile name (all profiles are displayed by default)
-c CONFIG, --config CONFIG

path to config file

So when listing backups, you can:

• filter by query (filename/stored filename)

• filter by destination (either glacier or s3)

• filter by tags

• filter by profile (if you manage multiple AWS/bucket/vault)

Example:

show everything
$ bakthat show

search for a file stored on s3:
$ bakthat show myfile -d s3

4.1.5 Delete

If the backup is not stored in the default destination, you have to specify it manually.

Note: Remember that the delete command delete only the most recent matching backup.

$ bakthat delete bak

$ bakthat delete bak -d glacier

4.1.6 Delete older than

Delete backup older than the given string interval, like 1M for 1 month and so on.

• s seconds

• m minutes

12 Chapter 4. User Guide

Bakthat Documentation, Release 0.6.0

• h hours

• D days

• W weeks

• M months

• Y Years

$ bakthat delete_older_than bakname 3M

$ bakthat delete_older_than bakname 3M2D8h20m5s

$ bakthat delete_older_than bakname 3M -d glacier

4.1.7 Backup rotation

If you make automated with baktaht, it makes sense to rotate your backups.

Bakthat allows you to rotate backups using Grandfather-father-son backup rotation, you can set a default rotation
configuration.

$ bakthat configure_backups_rotation

Now you can rotate a backup set:

$ bakthat rotate_backups bakname

Note: Bakthat rely on the GrandFatherSon module to compute rotations, so if you need to setup more complex rotation
scheme (like hourly backups), refer to the docs and change the rotation settings manually in your configuration file.

4.1.8 Accessing bakthat Python API

Check out the Developer’s Guide.

4.1.9 Configuration

Bakthat stores configuration in YAML format, to have the same configuration handling for both command line and
Python module use.

You can also handle multiples profiles if you need to manage multiple AWs account or vaults/buckets.

By default, your configuration is stored in ~/.bakthat.yml, but you can specify a different file with the -c/--config
parameter.

To get started, you can run bakthat configure.

$ bakthat configure

Here is what a configuration object looks like:

access_key: YOUR_ACCESS_KEY
secret_key: YOUR_SECRET_KEY
region_name: us-east-1
glacier_vault: myvault
s3_bucket: mybucket

4.1. User Guide 13

http://en.wikipedia.org/wiki/Backup_rotation_scheme#Grandfather-father-son
https://pypi.python.org/pypi/GrandFatherSon
http://yaml.org/

Bakthat Documentation, Release 0.6.0

The region_name key is optionnal is you want to use us-east-1.

Managing profiles

Here is how profiles are stored, you can either create them manually or with command line.

default:
access_key: YOUR_ACCESS_KEY
secret_key: YOUR_SECRET_KEY
region_name: us-east-1
glacier_vault: myvault
s3_bucket: mybucket

myprofile:
access_key: YOUR_ACCESS_KEY
secret_key: YOUR_SECRET_KEY
region_name: us-east-1
glacier_vault: myvault
s3_bucket: mybucket

To create a profile from command line with bakthat:

$ bakthat configure --profile mynewprofile

$ bakthat configure -h
usage: bakthat configure [-h] [-p PROFILE]

optional arguments:
-h, --help show this help message and exit
-p PROFILE, --profile PROFILE

profile name (default by default)

Once your profile is configured, you can use it with --profile/-p argument.

$ bakthat backup -p myprofile
$ bakthat show -p myprofile

OpenStack Swift support

New in version 0.5.0.

If you use OpenStack Swift as backend, auth_version and auth_url key are required in configuration. Following are
sample configurations both temp_auth and keystone auth.

temp_auth:
access_key: ACCOUNT:USER
secret_key: YOUR_SECRET_KEY
region_name:
glacier_vault:
s3_bucket: mybucket
default_destination: swift
auth_url: https://<SWIFT_FQDN>/auth/v1.0
auth_version: '1'

keystone:
access_key: ACCOUNT:USER
secret_key: YOUR_SECRET_KEY
region_name:
glacier_vault:

14 Chapter 4. User Guide

Bakthat Documentation, Release 0.6.0

s3_bucket: mybucket
default_destination: swift
auth_url: https://<KEYSTONE_FQDN>/v2.0
auth_version: '2'

4.1.10 Stored metadata

Batkthat stores some data about your backups in a SQLite database (using peewee as wrapper) for few reasons:

• to allow you to filter them efficiently.

• to avoid making a lot of requests to AWS.

• to let you sync your bakthat data with multiple servers.

Here is a example of data stored in the SQLite database:

{u'backend': u's3',
u'backend_hash': u'9813aa99062d7a226f3327478eff3f63bf5603cd86999a42a2655f5d460e8e143c63822cb8e2f8998a694afee8d30c4924923dff695c6e5f739dffdd65768408',
u'backup_date': 1362508575,
u'filename': u'mydir',
u'is_deleted': 0,
u'last_updated': 1362508727,
u'metadata': {u'is_enc': True},
u'size': 3120,
u'stored_filename': u'mydir.20130305193615.tgz.enc',
u'tags': []}

All the keys are explicit, except backend_hash, which is the hash of your AWS access key concatenated with either
the S3 bucket, either the Glacier vault. This key is used when syncing backups with multiple servers.

4.1.11 Backup/Restore Glacier inventory

Bakthat automatically backups the local Glacier inventory (a dict with filename => archive_id mapping) to your S3
bucket under the “bakthat_glacier_inventory” key.

You can retrieve bakthat custom inventory without waiting:

$ bakthat show_glacier_inventory

or

$ bakthat show_local_glacier_inventory

You can trigger a backup mannualy:

$ bakthat backup_glacier_inventory

And here is how to restore the glacier inventory from S3:

$ bakthat restore_glacier_inventory

4.1.12 S3 and Glacier IAM permissions

4.1. User Guide 15

http://peewee.readthedocs.org/

Bakthat Documentation, Release 0.6.0

{
"Statement": [
{

"Effect": "Allow",
"Action": "s3:*",
"Resource": "arn:aws:s3:::S3_BUCKET_NAME*"

},
{

"Effect": "Allow",
"Action": "glacier:*"
"Resource": "arn:aws:glacier:AWS_REGION:AWS_ACCOUNT_ID:vaults/GLACIER_VAULT_NAME",

}
]

}

16 Chapter 4. User Guide

CHAPTER 5

Developer’s Guide

5.1 Developer’s Guide

5.1.1 Low level API

You can access low level API (the same used when using bakthat in command line mode) from bakthat root module.

import bakthat

roration is optional
bakthat_conf = {'access_key': 'YOURACCESSKEY',

'secret_key': 'YOURSECRETKEY',
'glacier_vault': 'yourvault',
's3_bucket': 'yours3bucket',
'region_name': 'eu-west-1',
'rotation': {'days': 7,

'first_week_day': 5,
'months': 6,
'weeks': 6}}

bakthat.backup("/dir/i/wanto/bak", conf=bakthat_conf)

bakthat.backup("/dir/i/wanto/bak", conf=bakthat_conf, destination="glacier")

or if you want to have generated the configuration file with "bakthat configure" or created ~/.bakthat.yml
bakthat.backup("/dir/i/wanto/bak")

bakthat.ls()

restore in the current working directory
bakthat.restore("bak", conf=bakthat_conf)

Event Hooks

New in version 0.6.0.

You can configure hook to be executed on the following events:

• before_backup

• on_backup

17

Bakthat Documentation, Release 0.6.0

• before_restore

• on_restore

• before_delete

• on_delete

• before_delete_older_than

• on_delete_older_than

• before_rotate_backups

• on_rotate_backups

So, before_ events are executed at the beginning of the action, and on_ events are executed just before the end.

For each action, a session_id (an uuid4) is assigned, so you can match up before_ and on_ events.

Every callback receive the session_id as first argument, and for on_ callbacks, you can retrieve the result of the
function, most of the time a Backup object or a list of Backup object, depending of the context.

from bakthat import backup, events

def before_backup_callback(session_id):
print session_id, "before_backup"

def on_backup_callback(session_id, backup):
print session_id, "on_backup", backup

events.before_backup += before_backup_callback
events.on_backup += on_backup_callback

bakthat.backup("/home/thomas/mydir")

Bakthat makes use of Events to handle all the “event things”.

5.1.2 Plugins

New in version 0.6.0.

You can create plugins to extend bakthat features, all you need to do is to subclass bakthat.plugin.Plugin and
implement an activate (and optionally deactivate, executed just before exiting) method.

The activate and deactivate method is called only once. activate is called when the plugin is initialized,
and deactivate (you can see it like a cleanup function) is called at exit.

Note: For now, you can’t create new command yet with plugin (maybe in the future).

By default, plugins are stored in ~/.bakthat_plugins/, but you can change the plugins location by setting the
plugins_dir setting in your configuration file.

default:
plugins_dir: /home/thomas/.bakthat_plugins

And to enable plugins, add it to the plugins array:

default:
plugins: [test_plugin.TestPlugin, filename.MyPlugin]

18 Chapter 5. Developer’s Guide

https://github.com/nicolaiarocci/events

Bakthat Documentation, Release 0.6.0

You can access raw profile configuration using self.conf, and bakthat logger using self.log (e.g.
self.log.info("hello")) and in any methods. You can also hook events directly on self, like
self.on_backup += mycallback.

Your First Plugin

Here is a basic plugin example, a TimerPlugin in test_plugin.py:

import time
from bakthat.plugin import Plugin

class TestPlugin(Plugin):
def activate(self):

self.start = {}
self.stop = {}
self.before_backup += self.before_backup_callback
self.on_backup += self.on_backup_callback

def before_backup_callback(self, session_id):
self.start[session_id] = time.time()
self.log.info("before_backup {0}".format(session_id))

def on_backup_callback(self, session_id, backup):
self.stop[session_id] = time.time()
self.log.info("on_backup {0} {1}".format(session_id, backup))
self.log.info("Job duration: {0}s".format(self.stop[session_id] - self.start[session_id]))

Now, we can enable it:

default:
plugins: [test_plugin.TestPlugin]

Finally, we can check that our plugin is actually working:

$ bakthat backup mydir
before_backup 4028dfc7-7a17-4a99-b3fe-88f6e4879bda
Backing up /home/thomas/mydir
Password (blank to disable encryption):
Compressing...
Uploading...
Upload completion: 0%
Upload completion: 100%
Upload completion: 0%
Upload completion: 100%
on_backup 4028dfc7-7a17-4a99-b3fe-88f6e4879bda <Backup: mydir.20130604191055.tgz>
Job duration: 4.34407806396s

Monkey Patching

With plugin, you have the ability to extend or modify everything in the activate function.

Here is an example, which update the Backups model at runtime:

from bakthat.plugin import Plugin
from bakthat.models import Backups

5.1. Developer’s Guide 19

Bakthat Documentation, Release 0.6.0

class MyBackups(Backups):
@classmethod
def my_custom_method(self):

return True

class ChangeModelPlugin(Plugin):
""" A basic plugin implementation. """
def activate(self):

global Backups
self.log.info("Replace Backups")
Backups = MyBackups

More on event hooks

See Event Hooks for more informations and Events documentation.

5.1.3 Helpers

BakHelper

BakHelper is a context manager that makes create backup script with bakthat (and it works well with sh) an easy task.

It takes care of create a temporary directory and make it the current working directory so you can just dump files to
backup or call system command line tool lilke mysqldump/mongodump/and so on with the help of sh.

Here is a minimal example.

import logging
logging.basicConfig(level=logging.INFO)

from bakthat.helper import BakHelper

with BakHelper("mybackup", tags=["mybackup"]) as bh:

with open("myfile.txt", "w") as f:
f.write("mydata")

bh.backup()
bh.rotate()

Now test the script:

$ python mybackupscript.py
INFO:root:Backing up /tmp/mybackup_JVTGOM
INFO:root:Compressing...
INFO:root:Uploading...
INFO:bakthat.backends:Upload completion: 0%
INFO:bakthat.backends:Upload completion: 100%

You can also use it like a normal class:

import logging
import sh
logging.basicConfig(level=logging.INFO)

20 Chapter 5. Developer’s Guide

https://github.com/nicolaiarocci/events
http://amoffat.github.com/sh/

Bakthat Documentation, Release 0.6.0

from bakthat.helper import BakHelper

bakthat_conf = {'access_key': 'YOURACCESSKEY',
'secret_key': 'YOURSECRETKEY',
'glacier_vault': 'yourvault',
's3_bucket': 'yours3bucket',
'region_name': 'eu-west-1',
'rotation': {'days': 7,

'first_week_day': 5,
'months': 6,
'weeks': 6}}

bh = BakHelper(conf=bakthat_conf)
with open("myfile.txt", "w") as f:

f.write("mydata")
bh.backup("myfile.txt")
bh.rotate("myfile.txt")

Create a MySQL backup script with BakHelper

Here is a MySQL backup script, it makes use of sh to call system mysqldump.

See also:

You can also check out a MongoDB backup script example here.

import logging
import sh
logging.basicConfig(level=logging.INFO)

from bakthat.helper import BakHelper

BACKUP_NAME = "myhost_mysql"
BACKUP_PASSWORD = "mypassword"
MYSQL_USER = "root"
MYSQL_PASSWORD = "mypassword"

with BakHelper(BACKUP_NAME, password=BACKUP_PASSWORD, tags=["mysql"]) as bh:
sh.mysqldump("-p{0}".format(MYSQL_PASSWORD),

u=MYSQL_USER,
all_databases=True,
_out="dump.sql")

bh.backup()
bh.rotate()

KeyValue

New in version 0.4.5.

KeyValue is a simple “key value store” that allows you to quickly store/retrieve strings/objects on Amazon S3. All
values are serialized with json, so you can directly backup any json serializable value.

It can also takes care of compressing (with gzip) and encrypting (optionnal).

Compression in enabled by default, you can disable it by passing compress=False when setting a key.

Also, backups stored with KeyValue can be restored with bakthat restore and show up in bakthat show.

5.1. Developer’s Guide 21

http://amoffat.github.com/sh/
http://thomassileo.com/blog/2013/03/21/backing-up-mongodb-to-amazon-glacier-slash-s3-with-python-using-sh-and-bakthat/

Bakthat Documentation, Release 0.6.0

from bakthat.helper import KeyValue
import json

bakthat_conf = {'access_key': 'YOURACCESSKEY',
'secret_key': 'YOURSECRETKEY',
'glacier_vault': 'yourvault',
's3_bucket': 'yours3bucket',
'region_name': 'es-east-1'}

kv = KeyValue(conf=bakthat_conf)

mydata = {"some": "data"}
kv.set_key("mykey", mydata)

mydata_restored = kv.get_key("mykey")

data_url = kv.get_key_url("mykey", 60) # url expires in 60 secondes

kv.delete_key("mykey")

kv.set_key("my_encrypted_key", "myvalue", password="mypassword")
kv.get_key("my_encrypted_key", password="mypassword")

You can also disable gzip compression if you want:
kv.set_key("my_non_compressed_key", {"my": "data"}, compress=False)

5.1.4 Accessing bakthat SQLite database

Since bakthat stores custom backups metadata (see Stored metadata), you can execute custom SQL query.

22 Chapter 5. Developer’s Guide

CHAPTER 6

API Documentation

6.1 Bakthat API

6.1.1 Bakthat

These functions are called when using bakthat in command line mode and are the foundation of the bakthat module.

backup

bakthat.backup(filename=’/var/build/user_builds/bakthat/checkouts/latest/docs’, destination=None, pro-
file=’default’, config=’/home/docs/.bakthat.yml’, prompt=’yes’, tags=[], key=None, ex-
clude_file=None, s3_reduced_redundancy=False, **kwargs)

Perform backup.

Parameters

• filename (str) – File/directory to backup.

• destination (str) – s3|glacier|swift

• prompt (str) – Disable password promp, disable encryption, only useful when using bak-
that in command line mode.

• tags (str or list) – Tags either in a str space separated, either directly a list of str (if calling
from Python).

• password (str) – Password, empty string to disable encryption.

• conf (dict) – Override/set AWS configuration.

• custom_filename (str) – Override the original filename (only in metadata)

Return type dict

Returns A dict containing the following keys: stored_filename, size, metadata, backend and file-
name.

restore

bakthat.restore(filename, destination=None, profile=’default’, config=’/home/docs/.bakthat.yml’,
**kwargs)

Restore backup in the current working directory.

Parameters

23

Bakthat Documentation, Release 0.6.0

• filename (str) – File/directory to backup.

• destination (str) – s3|glacier|swift

• profile (str) – Profile name (default by default).

• conf (dict) – Override/set AWS configuration.

Return type bool

Returns True if successful.

info

show

bakthat.show(query=’‘, destination=’‘, tags=’‘, profile=’default’, config=’/home/docs/.bakthat.yml’)

delete

bakthat.delete(filename, destination=None, profile=’default’, config=’/home/docs/.bakthat.yml’,
**kwargs)

Delete a backup.

Parameters

• filename (str) – stored filename to delete.

• destination (str) – glacier|s3|swift

• profile (str) – Profile name (default by default).

• conf (dict) – A dict with a custom configuration.

• conf – Override/set AWS configuration.

Return type bool

Returns True if the file is deleted.

delete_older_than

bakthat.delete_older_than(filename, interval, profile=’default’, config=’/home/docs/.bakthat.yml’,
destination=None, **kwargs)

Delete backups matching the given filename older than the given interval string.

Parameters

• filename (str) – File/directory name.

• interval (str) – Interval string like 1M, 1W, 1M3W4h2s... (s => seconds, m => minutes,
h => hours, D => days, W => weeks, M => months, Y => Years).

• destination (str) – glacier|s3|swift

• conf (dict) – Override/set AWS configuration.

Return type list

Returns A list containing the deleted keys (S3) or archives (Glacier).

24 Chapter 6. API Documentation

Bakthat Documentation, Release 0.6.0

rotate_backups

bakthat.rotate_backups(filename, destination=None, profile=’default’, con-
fig=’/home/docs/.bakthat.yml’, **kwargs)

Rotate backup using grandfather-father-son rotation scheme.

Parameters

• filename (str) – File/directory name.

• destination (str) – s3|glacier|swift

• conf (dict) – Override/set AWS configuration.

• days (int) – Number of days to keep.

• weeks (int) – Number of weeks to keep.

• months (int) – Number of months to keep.

• first_week_day (str) – First week day (to calculate wich weekly backup keep, saturday
by default).

Return type list

Returns A list containing the deleted keys (S3) or archives (Glacier).

6.1.2 Backends

BakthatBackend

class bakthat.backends.BakthatBackend(conf={}, profile=’default’)
Handle Configuration for Backends.

The profile is only useful when no conf is None.

Parameters

• conf (dict) – Custom configuration

• profile (str) – Profile name

GlacierBackend

class bakthat.backends.GlacierBackend(conf={}, profile=’default’)
Backend to handle Glacier upload/download.

backup_inventory()
Backup the local inventory from shelve as a json string to S3.

delete_job(filename)
Delete the job entry for the filename.

Parameters filename (str) – Stored filename.

download(keyname, job_check=False)
Initiate a Job, check its status, and download the archive if it’s completed.

get_job_id(filename)
Get the job_id corresponding to the filename.

Parameters filename (str) – Stored filename.

6.1. Bakthat API 25

Bakthat Documentation, Release 0.6.0

load_archives_from_s3()
Fetch latest inventory backup from S3.

restore_inventory()
Restore inventory from S3 to local shelve.

retrieve_archive(archive_id, jobid)
Initiate a job to retrieve Galcier archive or download archive.

retrieve_inventory(jobid)
Initiate a job to retrieve Galcier inventory or output inventory.

S3Backend

class bakthat.backends.S3Backend(conf={}, profile=’default’)
Backend to handle S3 upload/download.

cb(complete, total)
Upload callback to log upload percentage.

SwiftBackend

class bakthat.backends.SwiftBackend(conf={}, profile=’default’)
Backend to handle OpenStack Swift upload/download.

cb(complete, total)
Upload callback to log upload percentage.

RotationConfig

class bakthat.backends.RotationConfig(conf={}, profile=’default’)
Hold backups rotation configuration.

6.1.3 Helper

BakHelper

class bakthat.helper.BakHelper(backup_name, **kwargs)
Helper that makes building scripts with bakthat better faster stronger.

Designed to be used as a context manager.

Parameters

• backup_name (str) – Backup name also the prefix for the created temporary directory.

• destination (str) – Destination (glacier|s3)

• password (str) – Password (Empty string to disable encryption, disabled by default)

• profile (str) – Profile name, only valid if no custom conf is provided

• conf (dict) – Override profiles configuration

• tags (list) – List of tags

backup(filename=None, **kwargs)
Perform backup.

26 Chapter 6. API Documentation

Bakthat Documentation, Release 0.6.0

Parameters

• filename (str) – File/directory to backup.

• password (str) – Override already set password.

• destination (str) – Override already set destination.

• tags (list) – Tags list

• profile (str) – Profile name

• conf (dict) – Override profiles configuration

Return type dict

Returns A dict containing the following keys: stored_filename, size, metadata and filename.

delete_older_than(filename=None, interval=None, **kwargs)
Delete backups older than the given interval string.

Parameters

• filename (str) – File/directory name.

• interval (str) – Interval string like 1M, 1W, 1M3W4h2s... (s => seconds, m => min-
utes, h => hours, D => days, W => weeks, M => months, Y => Years).

• destination (str) – Override already set destination.

• profile (str) – Profile name

• conf (dict) – Override profiles configuration

Return type list

Returns A list containing the deleted keys (S3) or archives (Glacier).

enable_sync(api_url, auth=None)
Enable synchronization with bakthat.sync.BakSyncer (optional).

Parameters

• api_url (str) – Base API URL.

• auth (tuple) – Optional, tuple/list (username, password) for API authentication.

restore(filename, **kwargs)
Restore backup in the current working directory.

Parameters

• filename (str) – File/directory to backup.

• password (str) – Override already set password.

• destination (str) – Override already set destination.

• profile (str) – Profile name

• conf (dict) – Override profiles configuration

Return type bool

Returns True if successful.

rotate(filename=None, **kwargs)
Rotate backup using grandfather-father-son rotation scheme.

Parameters

6.1. Bakthat API 27

Bakthat Documentation, Release 0.6.0

• filename (str) – File/directory name.

• destination (str) – Override already set destination.

• profile (str) – Profile name

• conf (dict) – Override profiles configuration

Return type list

Returns A list containing the deleted keys (S3) or archives (Glacier).

sync()
Shortcut for calling BakSyncer.

KeyValue

class bakthat.helper.KeyValue(conf={}, profile=’default’)
A Key Value store to store/retrieve object/string on S3.

Data is gzipped and json encoded before uploading, compression can be disabled.

delete_key(keyname)
Delete the given key.

Parameters keyname (str) – Key name

get_key(keyname, **kwargs)
Return the object stored under keyname.

Parameters

• keyname (str) – Key name

• default (str) – Default value if key name does not exist, None by default

Return type str

Returns The key content as string, or default value.

get_key_url(keyname, expires_in, method=’GET’)
Generate a URL for the keyname object.

Be careful, the response is JSON encoded.

Parameters

• keyname (str) – Key name

• expires_in (int) – Number of the second before the expiration of the link

• method (str) – HTTP method for access

Rtype str

Returns The URL to download the content of the given keyname

set_key(keyname, value, **kwargs)
Store a string as keyname in S3.

Parameters

• keyname (str) – Key name

• value (bool) – Value to save, will be json encoded.

• compress – Compress content with gzip, True by default

28 Chapter 6. API Documentation

Bakthat Documentation, Release 0.6.0

6.1.4 Sync

BakSyncer

class bakthat.sync.BakSyncer(conf=None)
Helper to synchronize change on a backup set via a REST API.

No sensitive information is transmitted except (you should be using https): - API user/password - a hash (hash-
lib.sha512) of your access_key concatened with

your s3_bucket or glacier_vault, to be able to sync multiple client with the same configuration stored
as metadata for each bakckupyy.

Parameters conf (dict) – Config (url, username, password)

register()
Register/create the current host on the remote server if not already registered.

sync()
Draft for implementing bakthat clients (hosts) backups data synchronization.

Synchronize Bakthat sqlite database via a HTTP POST request.

Backups are never really deleted from sqlite database, we just update the is_deleted key.

It sends the last server sync timestamp along with data updated since last sync. Then the server return
backups that have been updated on the server since last sync.

On both sides, backups are either created if they don’t exists or updated if the incoming version is newer.

sync_auto()
Trigger sync if autosync is enabled.

bakmanager_hook

bakthat.sync.bakmanager_hook(conf, backup_data, key=None)
First version of a hook for monitoring periodic backups with BakManager (https://bakmanager.io).

Parameters

• conf (dict) – Current profile config

• backup_data (dict) – Backup data (size)

• key (str) – Periodic backup identifier

6.1.5 Utils

bakthat.utils._timedelta_total_seconds(td)
Python 2.6 backward compatibility function for timedelta.total_seconds.

Parameters td (timedelta object) – timedelta object

Return type float

Returns The total number of seconds for the given timedelta object.

bakthat.utils._interval_string_to_seconds(interval_string)
Convert internal string like 1M, 1Y3M, 3W to seconds.

6.1. Bakthat API 29

https://bakmanager.io

Bakthat Documentation, Release 0.6.0

Parameters interval_string (str) – Interval string like 1M, 1W, 1M3W4h2s... (s => seconds,
m => minutes, h => hours, D => days, W => weeks, M => months, Y => Years).

Return type int

Returns The conversion in seconds of interval_string.

6.1.6 Models

class bakthat.models.Backups(*args, **kwargs)
Backups Model.

class bakthat.models.Inventory(*args, **kwargs)
Filename => archive_id mapping for glacier archives.

class bakthat.models.Jobs(*args, **kwargs)
filename => job_id mapping for glacier archives.

classmethod get_job_id(filename)
Try to retrieve the job id for a filename.

Parameters filename (str) – Filename

Return type str

Returns Job Id for the given filename

classmethod update_job_id(filename, job_id)
Update job_id for the given filename.

Parameters

• filename (str) – Filename

• job_id (str) – New job_id

Returns None

class bakthat.models.Config(*args, **kwargs)
key => value config store.

30 Chapter 6. API Documentation

CHAPTER 7

Articles

• Bakthat 0.5.0 Released With OpenStack Swift Support and BakManager Integration

• Backing Up MongoDB to Amazon Glacier/S3 With Python Using Sh and Bakthat

• Bakthat 0.4.5 Released, Introducing a New Helper: KeyValue

• Bakthat 0.2.0 Released Adding Amazon Glacier Support

31

http://thomassileo.com/blog/2013/04/24/bakthat-0-dot-5-0-released-with-openstack-swift-support-and-bakmanager-integration/
http://thomassileo.com/blog/2013/03/21/backing-up-mongodb-to-amazon-glacier-slash-s3-with-python-using-sh-and-bakthat/
http://thomassileo.com/blog/2013/03/20/bakthat-0-dot-4-5-released-introducing-a-new-helper-keyvalue/
http://thomassileo.com/blog/2012/10/18/bakthat-0-dot-2-0-released-adding-amazon-glacier-support/

Bakthat Documentation, Release 0.6.0

32 Chapter 7. Articles

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

33

Bakthat Documentation, Release 0.6.0

34 Chapter 8. Indices and tables

Python Module Index

b
bakthat, 23

35

Bakthat Documentation, Release 0.6.0

36 Python Module Index

Index

Symbols
_interval_string_to_seconds() (in module bakthat.utils),

29
_timedelta_total_seconds() (in module bakthat.utils), 29

B
backup() (bakthat.helper.BakHelper method), 26
backup() (in module bakthat), 23
backup_inventory() (bakthat.backends.GlacierBackend

method), 25
Backups (class in bakthat.models), 30
BakHelper (class in bakthat.helper), 26
bakmanager_hook() (in module bakthat.sync), 29
BakSyncer (class in bakthat.sync), 29
bakthat (module), 23
BakthatBackend (class in bakthat.backends), 25

C
cb() (bakthat.backends.S3Backend method), 26
cb() (bakthat.backends.SwiftBackend method), 26
Config (class in bakthat.models), 30

D
delete() (in module bakthat), 24
delete_job() (bakthat.backends.GlacierBackend method),

25
delete_key() (bakthat.helper.KeyValue method), 28
delete_older_than() (bakthat.helper.BakHelper method),

27
delete_older_than() (in module bakthat), 24
download() (bakthat.backends.GlacierBackend method),

25

E
enable_sync() (bakthat.helper.BakHelper method), 27

G
get_job_id() (bakthat.backends.GlacierBackend method),

25
get_job_id() (bakthat.models.Jobs class method), 30

get_key() (bakthat.helper.KeyValue method), 28
get_key_url() (bakthat.helper.KeyValue method), 28
GlacierBackend (class in bakthat.backends), 25

I
Inventory (class in bakthat.models), 30

J
Jobs (class in bakthat.models), 30

K
KeyValue (class in bakthat.helper), 28

L
load_archives_from_s3() (bak-

that.backends.GlacierBackend method),
25

R
register() (bakthat.sync.BakSyncer method), 29
restore() (bakthat.helper.BakHelper method), 27
restore() (in module bakthat), 23
restore_inventory() (bakthat.backends.GlacierBackend

method), 26
retrieve_archive() (bakthat.backends.GlacierBackend

method), 26
retrieve_inventory() (bakthat.backends.GlacierBackend

method), 26
rotate() (bakthat.helper.BakHelper method), 27
rotate_backups() (in module bakthat), 25
RotationConfig (class in bakthat.backends), 26

S
S3Backend (class in bakthat.backends), 26
set_key() (bakthat.helper.KeyValue method), 28
show() (in module bakthat), 24
SwiftBackend (class in bakthat.backends), 26
sync() (bakthat.helper.BakHelper method), 28
sync() (bakthat.sync.BakSyncer method), 29
sync_auto() (bakthat.sync.BakSyncer method), 29

37

Bakthat Documentation, Release 0.6.0

U
update_job_id() (bakthat.models.Jobs class method), 30

38 Index

	Requirements
	Overview
	Bakthat command line tool
	Bakthat Python API

	Installation
	User Guide
	User Guide

	Developer's Guide
	Developer's Guide

	API Documentation
	Bakthat API

	Articles
	Indices and tables
	Python Module Index

